Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Terrestrial processes influence the atmosphere by controlling land‐to‐atmosphere fluxes of energy, water, and carbon. Prior research has demonstrated that parameter uncertainty drives uncertainty in land surface fluxes. However, the influence of land process uncertainty on the climate system remains underexplored. Here, we quantify how assumptions about land processes impact climate using a perturbed parameter ensemble for 18 land parameters in the Community Earth System Model version 2 under preindustrial conditions. We find that an observationally‐informed range of land parameters generate biogeophysical feedbacks that significantly influence the mean climate state, largely by modifying evapotranspiration. Global mean land surface temperature ranges by 2.2°C across our ensemble (σ = 0.5°C) and precipitation changes were significant and spatially variable. Our analysis demonstrates that the impacts of land parameter uncertainty on surface fluxes propagate to the entire Earth system, and provides insights into where and how land process uncertainty influences climate.more » « less
-
Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change.more » « less
-
null (Ed.)Abstract Increasing concentrations of CO 2 in the atmosphere influence climate both through CO 2 ’s role as a greenhouse gas and through its impact on plants. Plants respond to atmospheric CO 2 concentrations in several ways that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conductance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth system models, and a robust literature demonstrates that they can affect global-scale temperature. However, the physiological contribution to transient warming has yet to be assessed systematically in Earth system models. Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate response (TCR), which is defined as the change in globally averaged near-surface air temperature during the 20-yr window centered on the time of CO 2 doubling relative to preindustrial CO 2 concentrations. In CMIP6 models, the physiological effect contributes 0.12°C ( σ : 0.09°C; range: 0.02°–0.29°C) of warming to the TCR, corresponding to 6.1% of the full TCR ( σ : 3.8%; range: 1.4%–13.9%). Moreover, variation in the physiological contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR estimates than it does to the mean. The largest contribution of plant physiology to CO 2 -forced warming—and the intermodel spread in warming—occurs over land, especially in forested regions.more » « less
An official website of the United States government
